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Abstract

A number of satellite sensor systems will collect large data sets of the

Earth's surface during NASA's Earth Observing System (EOS) era. Efforts are

being made to develop efficient algorithms that can incorporate a wide variety of

spectral data and ancillary data in order to extract vegetation variables required

for global and regional studies of ecosystem processes, biosphere-atmosphere

interactions, and carbon dynamics. These variables are, for the most part,

continuous (e.g. biomass, leaf area index, fraction of vegetation cover,

vegetation height, vegetation age, spectral albedo, absorbed photosynthetic

active radiation, photosynthetic efficiency, etc.) and estimates may be made

using remotely sensed data (e.g. nadir and directional optical wavelengths,

multifrequency radar backscatter) and any other readily available ancillary data

(e.g., topography, sun angle, ground data, etc.). Using these types of data, neural

networks can: 1) provide accurate initial models for extracting vegetation

variables when an adequate amount of data is available; 2) provide a performance

standard for evaluating existing physically-based models; 3) invert

multivariate, physically based models; 4) in a variable selection process,

identify those independent variables which best infer the vegetation variable(s)

of interest; and 5) incorporate new data sources that would be difficult or

impossible to use with conventional techniques. In addition, neural networks

employ a more powerful and adaptive nonlinear equation form as compared to

traditional linear, index transformations, and simple nonlinear analyses. These

neural networks attributes are discussed in the context the authors'

investigations of extracting vegetation variables of ecological interest.



Introduction

The large data sets engendered during the EOS era will enhance the temporal,

spatial, and spectral coverage of the Earth (Asrar and Greenstone, 1995; Wharton

and Myers, 1997). The satellite digital data sets and ancillary data products will

require the development of efficient algorithms that can incorporate and

functionally utilize disparate data types. Numerous vegetation variables e.g., leaf

area, height, canopy roughness, land cover, stomatal resistance, latent and

sensible heat flux, radiative properties, and many others, are required for global

and regional studies of ecosystem processes, biosphere-atmosphere interactions,

and carbon dynamics (Asrar and Dozier 1994, Hall et al. 1995). The success of

efforts to extract vegetation variables such as these from remotely sensed data

and available ancillary data will determine the degree and scope of vegetation-

related science performed using EOS data.

In remote sensing missions of vegetation canopies, the problem is to

accurately extract vegetation variables from remotely sensed data. These

variables are, for the most part, continuous (e.g. biomass, leaf area index,

fraction of vegetation cover, vegetation height, vegetation age, spectral albedo,

absorbed photosynthetic active radiation, photosynthetic efficiency, etc.) and

estimates may be made using remotely sensed data (e.g. nadir and directional

optical wavelengths, multifrequency radar backscatter) and any other readily

available ancillary data (e.g., topography, sun angle, ground data, etc.). Inferring

continuous variables implies that a functional relationship must be made

between the predicted variable(s), the remotely sensed data, and ancillary data.

This is opposed to classification studies where the goal is to produce discrete

categories of vegetation types as reviewed by Atkinson and Tatnall (1997).

A significant portion of the remote sensing community is active in

developing techniques to accurately extract continuous vegetation properties. It

is clear from the literature that significant problems exist with the "traditional

techniques" being used. These are very topical and truly difficult problems that

are being encountered in the remote sensing community. Neural networks can

provide solutions to many of these problems. The intent of this paper is to raise

the awareness of the ecological community to the advantages of using neural

networks techniques in this area of research. The advantages and power of neural



networks for extracting continuous vegetation variables using optical/radar

data and ancillary data are discussed and compared to traditional techniques. The
authors' research are used as examples.

Traditional Extraction Techniques

Several common approaches exist to extract continuous vegetation variables.

These are classified as linear, nonlinear and physically-based models and are

discussed in detail by Kimes et al. (1998a). A brief summary of these models are

discussed along with the respective advantages and problems of each.

Classification studies where the goal is to produce discrete categories of

vegetation types are reviewed by Atkinson and Tatnall (1997).

Ideally, there exists a functional relationship between the independent

variables (e.g., remotely sensed signals) and the estimated variables (e.g.,

biomass, leaf area index, etc). However even if a physical relationship exists,

often it is not known. Consequently, one is often forced to make simplifying

assumptions that allow one to develop a predictive equation in the form of a

general linear model. Many physical biological processes are nonlinear. Therefore

a general linear model often performs poorly in predicting vegetation variables

because the relations between scattered radiation above vegetation canopies and

vegetation variables may be nonlinear (e.g., Jakubauskas, 1996).

More complicated linear models involve transformations on the independent

and/or dependent variables. Transformations allow one to reduce a more complex

model to a linear form. Many transformations used in the literature are some kind

of vegetation index. For example, in the optical region Myneni et al. (1995)

reported that there are more than 12 vegetation indices and they have been

correlated with vegetation amount, fraction of absorbed photosynthetically

active radiation, unstressed vegetation conductance and photosynthetic capacity,

and seasonal atmospheric carbon dioxide variations. Indices have been developed

to enhance the spectral contribution from green vegetation while minimizing

those from soil background, sun angle, sensor view angle, senesced vegetation,

and the atmosphere as reviewed by Kimes et al. (1998a). Although these models

can be related to a crude physical principJe, it does not give the scientist any

deep insight into the physical system. It is often difficult to decide what



transformations to make, if any. Generally, the choice is made based on the

results of previous studies in similar study areas and on trial and error.

The linear models above are linear in the coefficients and can be solved using
least squares. In some studies, one has knowledge that a nonlinear form

(nonlinear in the coefficients) is the more realistic and potentially more

accurate model. Specifically, these models are intrinsically nonlinear in that it
is impossible to convert them into a linear form. Numerous numerical iterative

techniques exist to solve these nonlinear models. When using a nonlinear
analysiS, it is implied that the researcher knows the proper nonlinear form to

implement. Generally, only simple nonlinear forms can be envisioned by the
researcher. A few examples are described by Kimes et al. (1998a).

Ideally, in the scientific community, one would like to develop accurate,

physically-based models for the physical system being studied. This model

serves as a hypothesis for our current understanding of the physical system and

as a basis for extracting desired vegetation variables from other readily
known/measured variables. These physically-based models are forced to address

the entire radiative transfer problem which includes a large number of variables.

In remote sensing applications many of these variables are not of interest.

Physically-based models range in complexity from simple nonlinear models to

complex radiative transfer models in realistic three-dimensional vegetation

canopies. The optical and radar models are reviewed by Kimes et al. (1998a).

To actually use physically-based models for extracting vegetation variables,
the models must be inverted. In most cases these models are complex nonlinear

systems which must be solved using numerical methods. The traditional approach

employs numerical optimization techniques that, once initialized searches for
the optimum parameter set that minimizes the error. There are difficulties in

using these techniques. A stable and optimum inversion is not guaranteed and the

technique can be computationally intensive when using complex radiative

transfer models of vegetation. In addition, physical vegetation models have many
parameters other than the variable(s) that is (are) being estimated. If one is to

invert the model using numerical optimization techniques, many parameters have
to be known and/or estimated using other methods. Initial conditions must be



set to deduce the desired variable(s). Many studies have all or some of these
problems.

Efforts to invert optical vegetation models are summarized by Privette et al.

(1994, 1996), Pinty et al. (1990), Ross and Marshak (1989), and Goel (1987). An

example of an effort to invert a Radar model is described by Polatin et al.
(1994). Several approaches have been adopted to overcome the difficulties in

inverting a model with many parameters. Goel (1987) noted that for a model to

be successfully inverted, the number of measurements must be greater than or

equal to the number of canopy parameters that need to be determined.

Furthermore, to invert nonlinear relationships, there should be many more

measurements than unknown parameters to facilitate a numerical solution.

Several approaches have been taken to achieve these

parameters/measurements criteria. Often physical constraints are imposed. For
example, the number of physi(_al parameters to describe the geometric and

scattering properties of vegetation components are limited (e.g. Kuusk 1994,

Pinty et al. 1990, Jacquemoud 1993, Moghaddam 1994, Saatchi and Moghaddam

1994). In addition, the radiative transfer functions are often simplified (e.g.
Pinty and Verstraete 1991, Prevot and Schmugge 1994, Govaerts and Verstraete

1994). Most inversion strategies must consider some combination of multi-angle

data and multispectral data. In addition, some optical studies have used multiple

sun angles. For inversions to be accurate, near optimal numbers of reflectance

samples, spectral regions, signal anisotropy, and model sensitivity are required

(Myneni et al. 1995). The amount of directional/multispectral data required to
obtain accurate inversions is often appreciable and can not always be collected.

Often, assumptions must be made about unknown variables (e.g. leaf-angle

distribution, leaf size, plant spacing, reflectance and transmittance

distributions of vegetation components, etc.). Generally, only one-dimensional

models have been successfully inverted against measured data (Govaerts and
Verstraete, 1994).

There is a trade off between model accuracy and the number of model

parameters considered. The most accurate and robust models generally have the

most canopy parameters and are least appropriate for direct inversion. The
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models with few parameters are easier to invert but are also
inaccurate models.

the most

Because direct inversion of models is computationally intensive, it generally
is not applied on a pixel by pixel basis over large regions. Generally, inversions in
the literature are carried out on only a few selected canopies rather than the

entire range of vegetation variations that would exist in real applications.

Neural Networks

In many areas of research an appropriate and accurate, physically-based

model for the purpose of extracting continuous vegetation variables does not

exist. Consequently, one is forced to adopt a linear or simple nonlinear form that

must be explicitly designed by a researcher. Coefficients are then fitted by

traditional regression or simple numerical routines. If the researcher has not

correctly envisioned all of the complex functional relationships between the

input and output data, this approach will not work well. What is needed is a

structure which adaptively develops its own basis functions, and their

corresponding coefficients, from data.

Neural networks have the ability to learn patterns or relationships given

training data, and to generalize or extract results from the data (Anderson and

Rosenfeld 1988, Wasserman 1989, and Zornetzer et al. 1990). The approximation

capability of neural networks is based on connectionism (Fu 1994). After

training, the network is a machine that approximately maps inputs to the desired

output(s). Kimes et al. (1998a) discusses the structure of neural networks,

important approximation properties, training algorithms and properties, and

pruning strategies of network structures.

Uses of Neural Networks and Remote Sensing Data

Neural networks have several attributes which facilitate extraction of

vegetation variables from remotely sensed data. The advantages of neural

networks as compared to traditional techniques are discussed and example

studies are presented. Neural network approaches have been shown to be equal or
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superior to conventional techniques, especially when strong
components exist in the system being studied.

nonlinear

Neural Networks as Initial Models

In many areas of research physically-based radiative scattering models do not

exist or are not accurate. In cases where models are lacking, neural networks can

be used as the initial model. If accuracy is the only concern, then a neural
network may be entirely adequate and desirable. A neural network can model

the system on the basis of a set of encoded input/output examples of the

system. The network maps inputs to the desired output by learning the

mathematical function underlying the system. With this method, input and output

variables can be related without any knowledge or assumptions about the

underlying mathematical representation. Several examples follow.

Kimes et al. (1996) used a MLP (multilayer perceptron) network as an initial

model to extract forest age in a Pacific Northwest forest using Thematic Mapper

and topographic data. Understanding the changes of forest fragmentation through

time are important for assessing alterations in ecosystem processes (forest

productivity, species diversity, nutrient cycling, carbon flux, hydrology, spread

of pests, etc.) and wildlife habitat and populations. The development of

physically-based radiative scattering models that incorporate forest growth and

topography, and that can be used to extract forest variables, is in its infancy.
Consequently, accurate models that are invertible in this context are lacking.

The study area was the H.J. Andrews Experimental Forest on the Blue River

Ranger District of the Willamette National Forest in western Oregon. Timber has

been harvested from this forest for the past 45 years and the cutting and

replanting history has been recorded. The study area was extracted from a

georeferenced TM scene acquired on July 7, 1991. A coincident digital terrain

model (DTM) derived from digital topographic elevation data was also acquired.

Using this DTM and an image processing software package, slope and aspect

images were generated over the study area. Sites were chosen to cover the

entire range of forest stand age and slope and aspect. The oldest recorded

clearcut stands were logged in 1950. A number of sites were chosen as primary

forest which had no recorded history of cutting. Various feed-forward neural



networks trained with back propagation were tested to predict forest age from
TM data and topographic data.

The results demonstrated that neural networks can be used as an initial model

for inferring forest age. The best network was a 6 -> 5 -> 1 structure with inputs

of TM bands 3, 4, 5, elevation, slope and aspect. The RMSE (root mean squared

errors) values of the predicted forest age were on the order of 5 years (Fig. 1).
TM bands 1, 2, 6, and 7 did not significantly add information to the network for

learning forest age. Furthermore, the results suggest that topographic

information (elevation, slope and aspect) can be effectively utilized by a neural

network approach. The results of the network approach were significantly better
than corresponding linear systems. As discussed in the Traditional Extraction

Techniques Section, many transformations (ratios, indices etc.) of optical and

radar wavelengths are used to infer vegetation variables of interest. The goal of

these studies is to find the transformation that produces the maximum degree of
accuracy when applied to a particular class of remote sensing problems.

Researcher often use simple transformations (ratios, indices etc.) because they
are fast and easy to apply and they are well known in the literature. However,

they provide little if any physical insights that can be used effectively to

increase the accuracy of inference. Consequently, we propose that an adaptive

learning technique such as neural networks would be superior to these simple

transformations in many applications. For example, Sader et al. (1989) found
that the NDVI (TM4-TM3)/(TM4+TM3) was not significantly correlated with

forest regeneration age classes. Neural networks have the potential to learn
more accurate relationships because they are not confined to the fixed

relationships represented by the above simple transformations. The neural

network approach is free to learn complex relationships that could not be
envisioned by researchers.

Kimes et al (1998b) employed neural nets in conjunction with SPOT

multispectral data to discriminate secondary from primary forest in Rondonia,

Brazil. Their work demonstrated that neural networks consistently outperformed
linear discriminant functions with respect to forest classification. Neural nets

differentiated primary forest, nonforest, and secondary forest at an overall

accuracy of 91.0% using 2 SPOT bands, and at 95.2% using one SPOT band and two
texture channels. The corresponding linear discriminant overall accuracies were
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88.9% (3 SPOT bands) and 92.6% (3 SPOT bands and 5 texture channels). Neural

nets also estimated secondary forest age more accurately than linear,
parametric functions. Using 2 spectral and 2 texture channels, a 4 -> 17 -> 1

neural network predicted secondary forest age over a 9 year range with an RMSE

of 2.0 years and and R2(actual vs predicted) of 0.38. The corresponding mulitple linear

regression employing 3 SPOT bands and 4 texture channels had an RMSE of 2.1

years and an R 2 of 0.31. Though neither technique could be said to accurately

estimate secondary forest age, neural networks consistently outperform

parametric, linear discriminant and regression procedures using fewer spectral
and textural bands.

Additional work by Nelson, Kimes, Rothier, and Salas near the same area in

Rondonia using Thematic Mapper multispectral data verifies these findings. For

instance, a linear discriminant function using four spectral/textural measures

differentiated primary forest, nonforest, and secondary forest with an overall

accuracy of 96.6%. Using 3 channels (3 -> 3 -> 3), the comparable neural net

yielded an overall accuracy of 97.2%. The TM spectral and textural data were also

used to estimate secondary forest age. The multiple linear predictive regression

utilized 6 spectral-texture channels and yielded an RMSE of 1.62 years and an

a2(actual vs predicted) of 0.35. The comparable neural net, using 4 channels, had an

RMSE of 1.59 years and an R2 value of 0.37. The differences between the linear

and neural net results are small, but in this and the Kimes et al. (1998b) studies,

they are consistent. In general, using fewer bands, utilizing automatic variable

selection procedures, and utilizing automatic weighting procedures, neural net

results are, in general, comparable to or better than linear discriminant and

linear regression results.

Ultimately, the scientific community needs to develop physically-based

radiative scattering models for the above areas of research. These models need

to be accurate and invertible for the desired variables. In research areas where

these activities are immature, the neural network approach can provide an

accurate initial model for predicting vegetation variables.
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Neural Networks as Baseline Control

A network can be used as a baseline control while developing adequate
physically-based models (Fu, 1994). Where adequate field and ground truth data
sets exist, a neural network can be trained and tested on these data sets. These

networks attempt to find the optimum functional relationships that exist
between the input variables and the output variables of interest. The networks

can be trained in the forward direction on the field data (e.g. vegetation canopy
variables are the inputs and radiative scattering is the output).

Improvements to the physically-based model are indicated if it cannot

surpass the accuracy of a neural network. Specifically, model accuracies less

than neural network accuracies indicate that the physical processes embedded in

the model must be improved (i.e. made more realistic). In this manner, neural

networks provides a performance standard for evaluating current and future
physically-based models (Fu, 1994).

Neural Networks For Inverting Physically-Based Models

In the Traditional Extraction Techniques Section, the difficulties in inverting
physically-based models were discussed. In summary, the following difficulties
can occur when using numerical optimization techniques to invert models. These

techniques can be time consuming and generally can not be applied on a pixel by
pixel basis for large regions. From a practical standpoint, often it is difficult to

collect the measurements (multiple view angles and wavelengths) needed for an

accurate inversion. Often models must be simplified before a stable and accurate

inversion can be developed. The models are simplified by decreasing the number

of parameters and/or simplifying the radiative transfer function. Simplified

models tend to be more inaccurate than the full models. Neural network

approaches provide potential solutions to all or some of these problems.

Significant simplification of physical models are made so that direct

inversion using numerical techniques can be successfully applied. The

disadvantage of this approach is that underlying relationships may be deleted

that may be useful in extracting the variables of interest. In contrast, the neural

network approach can be applied to the most sophisticated model without
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reducing the number of parameters or simplifying the physical processes. The
models that have many parameters and include all physical processes tend to be

the most accurate and robust models. Thus, the neural network approach applied

to these models may, potentially, find more optimal relationships between the

desired input and output variables. This approach provides a sound bench mark in
terms of accuracy for extracting various variables. If direct inversion

techniques of simplified models do not equal the accuracy obtained using the

neural network approach on the full model then important underlying

relationships are being ignored in the direct inversion approach.

A neural network approach can be used to accurately and efficiently invert

physically-based models. The approach is as follows. The physically-based model
describes the mathematical relationships between all the vegetation and

radiative parameters. The model is used to simulate a wide array of vegetation

canopies (the range of all canopies that would be encountered in the application

space) in the forward direction--that is the vegetation canopy variables are the

input and the radiative scattering above the canopy is calculated. Using the

model a wide range of canopies and their associated directional reflectances or

backscatter values can be calculated. Using these model-based data, training and

testing data sets can be constructed and presented to various neural networks.

These data sets consists of pairs of data containing the desired network inputs

(e.g. optical and/or radar) and the true outputs (e.g., vegetation variables of

interest). Embedded in these data are mathematical relationships between the
inputs and the outputs. In theory the neural network approximates the optimal

underlying mathematical relationships to map the inputs to the output. If only

weak mathematical relationships exist between the input and output values then

the network results will be poor. Thus, using this approach a neural network can
be used to invert a model. This inversion scheme can be applied using input data

that can be practically obtained in remote sensing missions. Many studies have

successfully used this approach.

Kimes et al. (1997) used a neural network approach to invert a combined

forest growth model and a radar backscatter model. The forest growth model
captures the natural variations of forest stands (e.g. growth, regeneration,

death, multiple species, and competition for light). This model was used to

produce vegetation structure data typical of northern temperate forests in Maine.
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Forest parameters such as woody biomass, tree density, tree height and tree age

are important for describing the function and productivity of forest ecosystems.
These data supplied inputs to the radar backscatter model which simulated the

polarimetric radar backscatter (C, L, P, X bands) above the mixed
conifer/hardwood forests. Using these simulated data, various neural networks

were trained with inputs of different backscatter bands and output variables of

total biomass, total number of trees, mean tree height, and mean tree age.
Techniques utilized included transformation of input variables, variable
selection with a genetic algorithm, and a cascade network and are described in

detail by Kimes et al. (1997).

The accuracies (RMSE and R2 values) for inferring various variables from

radar backscatter were total biomass (1.6 kg m-2, 0.94), number of trees (48

ha -1, 0.94), tree height (0.47 m, 0.88), and tree age (24.0 yrs., 0.83). For example,

Fig. 2 shows the true above ground biomass (kg m-2) versus the predicted above

ground biomass for a neural network with a structure of 5 -> 15 ->1 using
frequencies CHH, Cvv, ERR, and PHH (2 transformations were used for PHH). The

RMSE and R 2 values were 1.6 kg m m -2 and 0.94, respectively. These accuracies

are considered good considering the complexity of the combined model and the

fact that only simulated radar backscatter data were used without any other

knowledge of the forest. Several networks were shown to be relatively

insensitive to the addition of random noise to radar backscatter. The accuracy of

these networks were superior to traditional index techniques developed by

Ranson et al. (1997).

Neural Networks For Defining Relevant Variables

Networks can be used as a variable selection tool to determine a set of

variables that are relevant to the desired variable(s) to be inferred. If the

mapping of a network is not accurate, then perhaps some input variable(s) is(are)

missing. Also an input variable is relevant to the problem only if it significantly

increases the network's performance. Alternately, if there is an unacceptably

large number of input variables, several types of algorithms can be used to find

desirable subsets of input variables. Genetic algorithms (Koza, 1993) may be

used to select an optimal subset of input variables. In this type of application,

the genetic algorithm searches for a subset of input variables that behave
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synergistically to produce the highest network accuracy. The algorithm starts

with a small subset of inputs of limited size and adds input variables according
to network performance. This evolutionary process is detailed by Koza (1993) and

a specific application relevant to this paper is described by Kimes et al. (1997).

In these ways, networks can be used to identify input variables which best

predict the variable(s) of interest. Several examples follow.

The network analysis in the forest age study discussed previously (Kimes et

al. , 1996), defined a set of variables that were relevant to modeling efforts
designed to infer forest age. Specifically it was discovered that the best inputs

were TM bands 3, 4, 5, elevation, slope and aspect. TM bands 1, 2, 6, and 7 did not

significantly add information to the network for learning forest age.

Furthermore, the study suggests that topographic information (elevation, slope

and aspect) can be effectively utilized by a neural network approach. However, it

was shown that this same topographic information was not useful when used in a

traditional linear approach and had RMSE values on the order of 35-40% higher

than the neural network approach.

Neural networks can also be applied to simulated data from physically-based

models to define a set of variables which may be used to infer variable(s) of

interest. As discussed previously, Kimes et al. (1997) used a neural network

approach to develop accurate algorithms for inverting a complex forest

backscatter model. Using these simulated data, various neural networks were

trained with inputs of different backscatter bands and output variables of total
biomass, total number of trees, mean tree height, and mean tree age. The authors

found that the networks that used only AIRSAR bands (C, L, P) had a high degree

of accuracy. The inclusion of the X band with the AIRSAR bands did not seem to

significantly increase the accuracy of the networks. The networks that used only

the C and L bands still had a relatively high degree of accuracy for all forest

variables (R 2 values from 0.75 to 0.91). The significance of this fact is that

there is no current instrument or planned instrument that is collecting or will

collect P band data. However, there are planned instruments collecting C and L

band data. Modest accuracies (R 2 values from 0.65 to 0.84) were obtained with

networks that used only the L band and poor accuracies (R 2 values from 0.36 to

0.46) were obtained with networks that used only the C band.
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Neural Networks as Adaptable Systems

Neural networks are readily adaptable. They can easily incorporate new
ancillary information that would be difficult or impossible to use with

conventional techniques. For example, Kimes et al. (1996) included topographic

data (slope, aspect, elevation) as ancillary information to infer forest age from

TM data. They found that by introducing this ancillary information the network

accuracy improved significantly (from 8.0 yrs. to 5.1 yrs. RMSE). It was not

known how to incorporate topographic information effectively using traditional

techniques. However, neural networks are ideally suited to learning new
relationships between ancillary information, other input variables and the

desired output variable. New input variables can be introduced to the network and

tested with ease. This is especially useful when a researcher expects a new

variable to add information to the problem of interest but does not have any

knowledge of the functional form to use in introducing the new variable using
traditional techniques.

Traditional numerical methods have difficulty in inverting multiple
disconnected models. For example, Ranson et al. (1997) used a forest growth

model to simulate growth and development of northern mixed coniferous

hardwood forests. Output from this model were used as input to the canopy
backscatter model that calculated radar backscatter coefficients for simulated

forest stands. Classic numerical inversion of such a disconnected system

(multiple models) is difficult when the functional connection between the
different models is not explicitly defined. In these situations, researchers often

adopt simple linear or nonlinear forms. For example, Ranson et al. (1997) choose

to develop a simple index relationship to infer forest biomass from the radar

backscatter coefficients. Neural networks are ideally suited for such problems.

Networks find the best nonlinear function based on the networks complexity

without the constraint of linearity or pre-specified nonlinearity used in
traditional techniques. No explicit functional relationships between the

disconnected models is required. Kimes et al. (1997) found that networks were

significantly more accurate than traditional techniques for inverting the

disconnected models of Ranson et al. (1997). Specifically, using the above neural
network approach, the above ground biomass (kg m-2) was extracted with RMSE

and R2 accuracies of 1.6 kg m-2 and 0.94, respectively as opposed to 2.6 kg m -2
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and 0.85, respectively, using the traditional index method of Ranson et al.

(1997).

Conclusions and Implications

Neural networks have attributes which facilitate extraction of vegetation

variables. Neural networks have significant advantages as compared to

traditional techniques when applied to both measurement and modeling studies.

Inmany areas of research physically-based radiative scattering models do not

exist or are not accurate. In cases where accurate models are lacking, neural

networks can be used as the initial model. A neural network can model the

system on the basis of a set of encoded input/output examples of the systems.

Neural networks can provide a baseline against which the performance of

physically-based models can be compared. The networks can be trained on field

data. Improvements to the physically-based model are indicated if it cannot

surpass the accuracy of a neural network.

A neural network approach can be used to accurately and efficiently invert

physically-based models. The neural network approach can be applied to the most

sophisticated model without reducing the number of parameters or simplifying

the physical processes. The models that have many parameters and include all

physical processes tend to be the most accurate and robust models. Thus, the

application of neural networks to invert these models has the potential of

finding more optimal relationships between the desired input and output

variables.

Networks can be used as a variable selection tool to define a set of variables

which accurately predict variable(s) of interest. If the mapping of a network is

not accurate, then perhaps some input variable(s) is(are) missing. Also an input

variable is relevant to the problem only if it significantly increases the

network's performance. Thus, networks can be used to identify relevant variables

in complex nonlinear system.
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Neural networks are readily adaptable. They can easily incorporate new
information that would be difficult or impossible to use with conventional

techniques. Neural networks are ideally suited to learning new relationships

between ancillary information, other input variables and the desired output

variable. New input variables can be introduced to the network and tested easily.
This is especially useful when a researcher expects a new variable to add

information to the problem of interest but does not have any knowledge of the
functional form to use in introducing the new variable using traditional
techniques.
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Figure Captions

Fig. 1. Predicted year logged versus the true year logged for the testing data. The

network structure was the 6 -> 5 -> 1 (#inputs, #hidden nodes, #outputs). The

inputs were TM bands 3, 4, 5, elevation, slope and aspect. The number of

pixels/points shown are 3555 for the testing data. The RMSE and R 2 values for

the testing data were 5.6 and 0.69, respectively.

Fig. 2. True above ground biomass (kg m -2) versus the predicted above ground

biomass. The network structure was 5 -> 15 -> 1 (#inputs, #hidden nodes,

#outputs). The inputs were frequencies CHH, Cvv, LHH, and PHH. The RMSE and R 2

values were 1.6 kg m -2 and 0.94, respectively.
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